Nutritional impact on lameness in dairy cows

*Hugh Galbraith

SCHOOL OF BIOLOGICAL SCIENCES, UNIVERSITY OF ABERDEEN, 23 ST MACHAR DRIVE ABERDEEN, AB23 8EQ, UK.

*Email: h.galbraith@abdn.ac.uk
Lameness: Longstanding dairy cattle disease (Greenough, 1997): Contemporary husbandry (Particularly weeks 0-20 post partum)

Major disease incidence per 100 cows eg:

FERTILITY > MASTITIS >

*24.0 - LOCOMOTORY LAMENESS (... 20-60%) (+ lying, getting up etc...)

Cause?
In the foot: “claw horn disorder” and/or non- infectious inflammatory “laminitis”?

Symptoms, typically painful, include sole bruising, haemorrhage, ulceration

Note also: Infectious dermatitis: (Treponemal spirochaetes) (Cheli and Mortellaro, 1974)
How? - associated with suspension of bodyweight: issues for susceptibility

- Location:
 - claws of hind (mainly) and front feet
 - Weight pressing on soft tissues
 - Vertical impact and/or torsional stress

Susceptibility and risk factors; Resilience. Complex.

Extrinsic: (external); floor surface (hard concrete vs rubber mats...), cubicles, time standing...cow-cow interactions. (Claw trimming). DIET

Intrinsic: (cow biology), genetics, pregnancy, parturition, lactation stage... Interactions...
Foot disease: focus on diet and nutrition: Factors to consider

Foot anatomy
- Identify structure and composition
- at tissue, cell and molecular levels
- consider effect of failure of function of tissue components

- Nutrition?

- Role in growth and maintenance of foot tissues
- Meeting compositional requirements
- Avoiding digestive upset - eg ruminal acidosis with systemic impact

- Being aware of partitioning of nutrients
- competition between body tissues, eg growth (heifers) foetus, lactation...... (lactation curve; feed intake capacity)..

What nutrients are needed for functional integrity?

Depends on structure/composition of the claw...
Functional foot anatomy: importance of epidermal horn; dermal connective tissue -

Body weight suspension -
Bone attaches to wall horn via
*Internal laminae and connective tissue (collagens, elastins)

Failure in suspension:
PIII bone presses on solear soft tissue .. Causing damage...

Note:
*Wall and sole horn (protects soft tissue)
Digital cushion (Shock absorption- force dispersion)
Lameness prevention? Healthy laminae: provide effective body weight suspension

- Wall laminar suspension involves:
 - Connective tissue; **collagens/elastin** (Synthesis/ break down)
- Horn: **keratins** (intermediate filaments and associated proteins)

Healthy laminae

Damaged laminae

What regulates maintenance of integrity of collagens and other CT molecules? Zn-metalloproteinases

Test for collagenase - breaks down collagen
Typical of **claw horn disorder** or laminitis

....... Lameness......
Sole region: Vascularised dermal tissue with papillae and epidermal sole horn

- Anatomy showing dermis with connective tissue (Collagens; elastin) and blood vessels (Blood leakage and damage)
- and epidermis horn (Tubular horn - from tip of papillae...)

Histological section

- Dermis; connective tissue
- Papilla
- Blood vessel
- Corium dermis
- Sole horn
- Epidermal basal keratinocytes nucleated (new cells)
- Keratinocytes; Enucleated (Cornified hard horn)
Dermis, basement membrane, hypodermis

DERMIS
• Cells are mesenchymal fibroblasts (Vimentin, not keratins in IFs)
• Low cell population
• High extracellular matrix, collagens etc in connective tissue ...
• Vascular: supplies nutrients and growth factors
• Enervated: vaso-effects, pain perception

BASEMENT MEMBRANE
• Macromolecules. connect dermis to epidermis
• Regulates keratin gene expression
• Transport of nutrients, mitogens and morphogens

BOTH
• degraded by (Zn) metalloproteinases
• Growth-factor stimulated synthesis of macromolecules

HYPODERMIS
• Collagenous tissue with fat cells forms the Digital cushion - shock absorbers
Composition of epidermis and horn

Made up of: Ectodermal (epithelial) keratinocytes (cells)

Ca 100 Keratin proteins:
- form polymers in intermediate filaments (IFs) (low cysteine: 4-7%)
- Combine with (IF Associated proteins) (higher cysteine- up to 30%)
- Form cytoskeleton in cells
- Bonds: intra-and inter-molecular disulphide
- (cysteine) -C- SH + SH- C - = - S - S -
- Proteins: Important in production of good quality horn...
Function; Composition of claw horn and impression hardness; Met/cys concentrations (g/kg. Galbraith et al 2006)

<table>
<thead>
<tr>
<th>*Claw Site</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>#SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness values</td>
<td>55.2<sup>ab</sup></td>
<td>55.8<sup>a</sup></td>
<td>34.9<sup>cd</sup></td>
<td>36.9<sup>bcd</sup></td>
<td>32.1<sup>d</sup></td>
<td>44.8<sup>bc</sup></td>
<td>47.3<sup>abc</sup></td>
<td>42.9<sup>bcd</sup></td>
<td>8.20</td>
</tr>
</tbody>
</table>

Amino Acid

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>S.D.</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methionine</td>
<td>6.97<sup>a</sup></td>
<td>6.69<sup>a</sup></td>
<td>10.42<sup>b</sup></td>
<td>1.87</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Cysteine</td>
<td>65.1<sup>a</sup></td>
<td>68.9<sup>a</sup></td>
<td>40.5<sup>b</sup></td>
<td>13.5</td>
<td>p<0.01</td>
</tr>
</tbody>
</table>

Wall; hard, higher cysteine: Heel softer flexible, lower cysteine
Amino acid composition of horn and feed sources (g/16gN): Supply, partition.

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Wall horn</th>
<th>Sole horn</th>
<th>Muscle</th>
<th>Rumen microbial protein</th>
<th>Extracted soyabean meal</th>
<th>White fishmeal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threonine</td>
<td>5.2</td>
<td>4.8</td>
<td>3.9</td>
<td>5.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Leucine</td>
<td>8.1</td>
<td>8.9</td>
<td>5.8</td>
<td>7.4</td>
<td>8.2</td>
<td>6.7</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>2.3</td>
<td>1.4</td>
<td>3.1</td>
<td>5.5</td>
<td>5.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Lysine</td>
<td>5.1</td>
<td>1.4</td>
<td>5.9</td>
<td>8.1</td>
<td>6.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.70</td>
<td>1.04</td>
<td>1.8</td>
<td>2.5</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Cyst(e)ine</td>
<td>6.51</td>
<td>4.05</td>
<td>1.1</td>
<td>1.0</td>
<td>1.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Amino acids in claw horn, competing tissues and in feed sources (Galbraith et al, 2006).
Importance of cysteine supply

• Cysteine is disproportionately present in claw horn

• Why? Keratins, IFAPS....

• Solution 1? Supplement diet with protected cysteine?

• NO. Problem: usually unstable - oxidises

Solution 2:
Utilise methionine and post-absorptive transulphuration (with serine) to cysteine. YES. (In proteins or "protected") ...or synthesised - give S in diet)

• How much is needed for cysteine synthesis + meeting specific requirement for methionine? (10-20g/day??)

• How interacts directly with claw tissue: uptake + incorporation?
Claw tissue-interactions: L-Methionine (\(^{35}\)S) incorporation into protein in claw tissue explants

Effects of L-methionine concentration (\(\mu\text{mol/L}\)) on protein synthesis in sole explants (21h incubation, then incubation 3 h with 6.0 \(\mu\text{Ci/ml}\) L-[\(^{35}\)S]-methionine. (Hepburn et al, 2008)

In practice supply good quality protein (or protected methionine) in the diet.
Importance of protein/amino acid supply
Major constituent is protein

Nutritional supply needed in:

EPIDERMIS;
Good quality horn - Keratinocytes, IFs and IFAPs, cell envelope, actin, enzymes, adhesion proteins (intercellular cementing proteins)...

DERMIS;
- Fibroblasts, vascular and neural cells. Healthy - connective tissue - collagens, elastins, fibronectins, glycosaminoglycans...
- Resistance to mechanical forces on foot..
Structure:function;
Importance of molecular architecture: α-keratins in horn by X-ray diffraction (XRD)

XRD pattern showing arcs on equatorial axis typical of hard α-keratin (Interfibril spacings)

Diffraction angles show alignment of fibrils with importance in load-bearing in horn (Browne et al, 2007)
Digital cushion pads: “Shock absorbers”
Important role in lameness prevention

• **Sole ulcers and white line** diseases negatively associated with thickness of the digital cushion pads
• **Body condition scores** positively associated with digital cushion thickness
• Digital cushion thickness **decreased** from the first month of lactation
• Recent results (Newsome et al. 2017)- suggested that thin solar soft tissue predisposed to occurrence of sole ulcer or sole haemorrhage in dairy cows

Composition: lipids

• Lipid content in the pads was significantly **higher** in cows than in the heifers
• The lipids in all pads contained >77% monounsaturated fatty acids (**MUFA**),
• Among the polyunsaturated fatty acids (**PUFA**) a significantly higher proportion of **arachidonic acid** (**AA**) was found in heifer pads than in those of the cows

• **Nutritional supply** - need to provide substrate for lipids and fibrous proteins
Healthy horn cells: Adhesion from inter-cellular cementing substance (eg. Mülling et al. 2006)

Composition:
Glycoproteins and lipids between horn cells

Lipids in horn: eg. cholesterol: FFA, TAG, cholesterol sulphate, ceramides

Total lipid: 0.015 for wall; 0.03 for heel

Composition: lame vs non-lame-
- Lame cow horn - more linoleic (C18:3n-6); linolenic (C18:3n-3) and arachidonic acid (C20:4n-6) than the claws of sound cows. (Offer, et al., 2000)

- Important lipohilic barrier function

- Feeding fatty acids (fish oil) changed lipid composition - more PUFA
Nutrition/ regulation: considerations in pregnancy and development

- What has been noted is that:
 - For cows: poor pre-partum (white line) claw health of heifers predisposes to poor quality horn post-partum (Kempson and Logue, 1993).
 - Related to poor IFAP formation and intercellular adhesion
 - Increased susceptibility to solar lesion development post partum

What about pre-natal development of claw tissues of the heifer calf?
- Impact of nutrition in utero?
- Limited information
In addition: changes in physiological state post-partum from...

- Combinations of changes in eg. animal growth, pregnancy, parturition, lactation influencing
- Systemic homeostatic/homeorhthetic signalling
- Spillover to produce direct effects on claw tissues?

- Metabolic hormones affecting synthesis and breakdown of protein (eg collagens...)
- and lipid (digital cushions...)? (decreases after calving); ...
- fat mobilisation..... Feed intake vs milk output...

- Also indirect effects on partition of nutrients to claw and affecting functional integrity?
- (Low efficiency of utilisation of protein for integumental tissues eg wool... 0.26 (AFRC, 1993)...)
Evidence for endocrine-related aetiology: reproduction and lactation

- Comparison of laminar region composition and physical properties. Pregnant vs maiden heifers (Tarlton et al, 2002)

- Increased laxity of connective tissue around parturition and into lactation not associated with nutritional acidosis.

- Expanded and distorted laminae with more active metalloproteinases

- Site-specific bio-mechanical properties relating to composition

- Question of association with endocrine/systemic signalling for pregnancy and lactation:
 - Hormones: relaxin: oestriadiol-17β....??

Note: different (non-reproductive) mechanisms responsible for claw horn lesions in male dairy or beef cattle.
Evidence for nutritional/inflammatory aetiology. SARA. Ruminal pH effects?

- Nutritional imbalances produce acute/subacute ruminal acidosis (SARA) causing inflammation? (Socek, 1997). (Ruminal pH < 5.3...)
- Diet-induced SARA produced ruminal LPS endotoxin release and systemic inflammatory response in rumen-fistulated steers (Gozho et al, 2005)

- Model system with oligofructose overload of cows produced lameness, and ruminal acidosis (Thoefner et al, 2004, 2005)
- Reports of Danscher et al. 2009; 2013
 - Acute clinical laminitis by 48h and histologically expanded dermal laminae and changed basement membrane

- Similarity to the equine model - more clearly nutritional??
- In practice, how record SARA in cows?? pH boluses..
 - UK BBSRC-funded projects
Potential role of the hindgut in SARA? (Adapted from: **McCartney et al. 2014) http://old.eaap.org/Previous_Annual_Meetings/2014Copenhagen/Papers/Published/S07_09.pdf

“Visible inflammation of the rumen wall correlates with caecal lipopolysaccharide concentrations”

LPS from caecum translocates into bloodstream?

“Translocated LPS during SARA may aggravate ruminal acidosis” (Jing et al., 2014)”

Question: Affecting inflammation in other tissues also?
Nutrition-related SARA Issues; pH effects....

- Rapid carbohydrate fermentation decreases rumen pH
- Sugars (AHDB - https://dairy.ahdb.org.uk/)
- Polymers: Starch fermented faster than cellulose
- Starch - particle size regulating acid VFA and lactate production...

Buffering saliva (~100L/day) stimulated by forage/fibre (also suggestion that long forage decreases feed intake allowing more saliva/dry matter intake; Beauchemin et al., 2008)

- Evidence of lameness induced by nutritional SARA in practice?? - not clear...
Recent case study; Lameness in dairy farms differing in nutritional input (Yells, 2014)

Farms:

High Risk (HR: D1): Housed; TMR; 11kg concentrate intake/head/day in TMR: 12MJ/kg. Holstein.

Low Risk (LR: D2): grazed grass; whole crop silage; mixed grain (3kg/hd/day): Holstein Friesian
Dairy rations (Farms D1: D2); issues
Starch, particle size, grass sugars, saliva: buffering

D1(HR) TMR

D2 (LR) Whole crop silage + concentrate

D2 grass

TMR
Target: 11kg conc./head/d (High Risk)

Separate grain ration (3kg/hd/d) = (13 MJ/kg) DM ME
Plus grass and silage = ad libitum.

NB Fermentable sugars in grass (AHDB info!) (Low risk SARA?)
Locomotion Score (LS): Higher on Farm D1(HR) than D2 (LR). (2 observations)

Increasing lameness

High concentrate; high risk

Low concentrate: low risk
Partly on grass...

Farm HR: 38% Lesion score 2; 7.6% LS3
Farm LR: 26% LS 2; 2.7% LS3
Average production data: summary for the whole lactating herd for farms D1 and D2.

<table>
<thead>
<tr>
<th>Farm</th>
<th>Average Annual Milk Yield (kg)</th>
<th>Average butterfat (%)</th>
<th>Average milk protein (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 (HR)</td>
<td>9626</td>
<td>3.60</td>
<td>3.07</td>
</tr>
<tr>
<td>D2 (LR)</td>
<td>5997</td>
<td>4.20</td>
<td>3.55</td>
</tr>
</tbody>
</table>

Note: **Locomotion score for Farm HR, negatively correlated with milk yield, protein and butterfat.**
Other nutrients with roles in suspension and horn production

- Major minerals: Ca, P, Mg, ... Acid/base balance
- Trace minerals: Zn (Identified: Cell proliferation...), Cu, Se, Mo...
- Water
- Vitamins A, D, E...

- Water soluble vitamins (Important question about adequacy of supply from rumen/digestive tract synthesis)

Eg. Biotin response to supplementation ...elongating fatty acids; Digital cushions; Cementing substance

Important role of nutrients in internal structure, adhesion, enzyme activity, genomic signalling, methylation, post-translational modification...
Conclusions: current evidence

- Good classical nutrition essential to support maintenance of suspensory and horn producing tissues
- In context of absorbed nutrients, competing tissues, milk/nutrient balance

- Basic biology of regulation of horn production or connective tissue metabolism not fully understood
- Although evidence that poor quality horn, pre- and post-partum, is a frequent feature of claw horn lameness
- High input intensive environment may give a greater risk than low input (SARA contribution appears variable), but good dietary fibre and buffering reduce risk?

Also; coping with adverse environments mitigated by rubber mats; reduced standing time, good cubicle design etc...
Useful source of practical information

- UK Agriculture and Horticulture Development Board (AHDB)

 https://dairy.ahdb.org.uk/
Grazie per la vostra attenzione

Nutritional impact on lameness in dairy cows